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Abstract For the first time, to our opinion, an alignment

free, three dimensional quantitative structure activity rela-

tionships (3D-QSAR) of stability constants of a large

and heterogeneous variety of organic substances with

b-cyclodextrin was reported. GRIND methodology, where

descriptors are derived from GRID molecular interaction

fields (MIF), was used. After variable selection via frac-

tional factorial design (FFD), PLS analysis was carried out,

and a highly descriptive and predictive model was

obtained. The model satisfied a set of rigorous validation

criteria and performed well in the prediction of an external

test set. The proposed model is also checked for free from

chance correlation, reliability and robustness by permuta-

tion testing called progressive y scrambling. The obtained

models confirmed that size and shape of the molecules as

well as hydrophobic interactions are the main parameters

influencing the stabilities of diverse compounds—

b-cyclodextrin inclusion complexes.

Keywords b-cyclodextrin � Stability constant �
3D QSAR � GRIND descriptors

Introduction

Cyclodextrins (CDs) are cyclic oligomers that are widely

used in host–guest applications. The most common natural

CDs are a-CD, b-CD and c-CD, consisting of six, seven

and eight (1-4)-linked glucose units, respectively [1]. The

CDs all form doughnut-shaped molecules with their

hydroxyl groups on the outside of the molecule and a

relatively nonpolar hole down the middle. Because of

their structural features, CDs tend to form noncovalent

inclusion complexes, and these have been used to improve

properties such as solubility, dissolution rate, chemical

and physical stability and bioavailability of poorly water-

soluble compounds [2]. Therefore the CDs are the most

suitable host molecules for the recognition of hydrophobic

guest molecules, such as drugs, dyes, detergents, pesti-

cides and etc. in aqueous media in a wide range of

applications in industrial, pharmaceutical, agricultural and

other fields [3–6].

The stability (association) constant value of host–guest

complexes is a useful index of the binding strength of the

complex and is of great importance for the understanding

and evaluation of the inclusion complex formation [7].

Many attempts have been made to rationalize the stability

of noncovalent host–guest inclusion complexes in terms of

the molecular shape and size of guests, intermolecular

interactions, or solvation effects as driving forces for CDs

complexation [8]. The major interactions that have been

put forward to account for the stabilities of CD inclusion

complexes in aqueous solution were: release of ‘high-

energy’ water from the CD cavity, relief of conformational

strain energy possessed by the uncomplexed CD, the

hydrophobic interaction, electrostatic interactions, hydro-

gen bonding, induction forces and the London dispersion

force [9, 10]. CDs complex formation usually results from

different combinations of these forces. One approach used

for addressing the contribution each of these forces makes

toward complexation is to rely on quantitative-structure–

activity relationships (QSAR) [10, 11].
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QSAR, as a methodology that allows cost savings by

reducing the laboratory resources needed and the time

required to create and investigate new compounds with

better complexing profile, permits one to separate one type

of interaction from another and to do so quantitatively.

QSAR/QSPR methods including 2D-QSAR [12, 13], 3D-

QSAR and CoMFA [14, 15] have been applied to elucidate

the most important factors influencing the host guest

interactions and to predict the thermodynamic stability of

CDs inclusion complexes.

The GRIND, alignment independent, interpretable and

efficient to compute descriptors derived from GRID

molecular interaction fields, was proved relevant in diverse

structure–activity relationship studies. The aim of the

present study, in continuation to our recent efforts to model

the host:guest chemistry using QSAR approach [16, 17], is

to develop, for the first time to our knowledge, a valid and

predictive 3D-QSAR model, able to correlate and predict

the complex stability constants between a large and diverse

set of neutral molecules and b-cyclodextrin (b-CD), with

the applicability of GRID independent descriptors

(GRIND).

Materials and methods

Data set

A large and heterogeneous variety of 233 substances was

extracted from the work of Suzuki [18] and the experi-

mental data to be predicted is the b-CD complex stability

constants (K) in water at 298 K taken from references

therein. The set of guest molecules is structurally diverse

and includes a large number of classes of organic com-

pounds: aromatic hydrocarbons, alcohols, phenols, ethers,

aldehydes, ketones, acids, esters, nitriles, anilines, haloge-

nated compounds, heterocycles, nitro, sulfur and steroids

and barbitals compounds and b-cyclodextrin as host. Log-

transformed (log K) was used in the following QSAR

modeling. Table 1 displays a complete list of the chemicals

along with the reported experimental data. A statistical

subset selection was made using most descriptive com-

pound (MDC) method to select a balanced and chemically

diverse test set. The MDC criterion privileges a selection

scheme that weights the compounds according to their

population density [19]. The training set of 173 molecules

was used to adjust the parameters of the models, and the

rest of molecules were used to evaluate model prediction

ability. The model was externally validated with a test set

of compounds, which were not considered for QSAR

model generation (test set). The progressive scrambling

method (maximum: 8 bins, minimum: 2 bins and critical

point: 0.85) was carried out for the evaluation of the

sensitivity of the 3D-QSAR model to chance correlations

[20, 21]. Progressive scrambling with 2-6 components

(latent variables) produces three statistical data, the pre-

dictivity (q2) of the model, the calculated cross-validated

standard error (cSDEP) and the sensitivity to perturbation

(dq
20/dryy

02 ).

Molecular optimization and descriptor calculation

The 3D structure of the guest molecules was constructed

using the standard tools available in the SYBYL 7.3

molecular modeling package (Tripose Inc., St. Louis, USA)

running on a Red Hat Linux workstation 4.7. Energy

minimization performed using the Tripos force field with a

distance dependent dielectric and the Powell conjugate

gradient algorithm with a convergence criterion of

0.01 kcal/mol Å. Partial atomic charges were calculated

using the Gasteiger-Hückel method. GRid-INdependent

Descriptors (GRIND) was calculated automatically using

the software Pentacle, version1.05 [22]. The Pentacle

software uses alignment independent descriptors derived

from GRID molecular interaction fields (MIF). In this

study we generated MIFs for DRY, N1, O and TIP probes

defined as follows: the DRY probe represents hydrophobic

interactions, N1 (amide) and O (carbonyl) probes represent

hydrogen bond donor and acceptor groups, respectively,

and the TIP probe represents a shape-field. All molecular

interaction fields were computed with the grid resolution of

0.5 Å with the smoothing window 0.8 Å. AMANDA

algorithm were used for the extraction of nodes from the

obtained MIF, the distance and relative position of nodes

were described by MACC2.

Results and discussion

It is widely believed that 3D descriptors should provide

better descriptions of the binding interactions in host–guest

chemistry. However, most 3D methods suffer from two

constraints. First, the correct conformation of a molecule

must be used, which may not even be the lowest energy

conformation, to compare structurally different com-

pounds; second, the compounds must be properly aligned, a

step that is time-consuming and may introduce user bias

[23]. The Grid Independent (GRIND) descriptors [24] were

developed with the aim to overcome the alignment problem

and were therefore selected for this study. The GRIND

working procedure involves three steps: (a) computing a

set of molecular interaction fields (MIFs), (b) filtering the

MIFs to extract the most relevant regions, and (c) encoding

of geometrical relationships into GRIND by computing the

product of the interaction energy for each pair of filtered

points (nodes). When MIF are computed for the guest
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Table 1 Names, experimental

and calculated stability constant

(logK) of guest molecules

Chemical name CAS no Log K (Exp) Log K (Pred)

M1 Carbon tetrachloride 56-23-5 2.2 2.12

M2 Chloroform 67-66-3 1.43 1.46

M3 Methanol 67-56-1 -0.49 -0.22

M4 Acetaldehyde 75-07-0 -0.27 0.08

M5 Acetonitrile 75-05-8 -0.64 0.08

M6a Ethanol 64-17-5 -0.03 -0.68

M7 1,2-Ethanediol 107-21-1 -0.19 -0.07

M8a Acetone 67-64-1 0.42 -0.47

M9 1-Propanol 71-23-8 0.57 1.26

M10a 2-Propanol 67-63-0 0.63 0.77

M11 1,3-Propanediol 504-63-2 0.67 0.35

M12 Tetrahydrofuran 109-99-9 1.47 1.97

M13 Cyclobutanol 2919-23-5 1.18 1.69

M14 1-Butanol 71-36-3 1.22 1.08

M15a 2-Butanol 78-92-2 1.19 1.42

M16a 2-Methyl-1-propanol 78-83-1 1.62 1.36

M17 2-Methyl-2-propanol 75-65-0 1.68 1.60

M18 1,4-Butanediol 110-63-4 0.64 0.83

M19a Diethylamine 109-89-7 1.36 0.83

M20 Cyclopentanol 96-41-3 2.06 2.18

M21 1-Pentanol 71-41-0 1.8 1.82

M22 2-Pentanol 6032-29-7 1.49 1.27

M23a 3-Pentanol 584-02-1 1.35 1.93

M24 2-Methyl-1-butanol 137-32-6 2.08 1.67

M25 2-Methyl-2-butanol 75-85-4 1.91 2.24

M26 3-Methyl-1-butanol 123-51-3 2.25 1.81

M27 3-Methyl-2-butanol 598-75-4 1.92 2.06

M28a 2,2-Dimethyl-1-propanol 75-84-3 2.71 2.41

M29 1,5-Pentanediol 111-29-5 1.22 1.90

M30 1,4-Dibromobenzene 106-37-6 2.97 3.11

M31a 1,4-Diiodobenzene 624-38-4 3.17 3.38

M32a 3,5-Dibromophenol 626-41-5 2.56 3.10

M33a 3,5-Dichlorophenol 591-35-5 2.07 3.18

M34 1-Chloro-4-nitrobenzene 100-00-5 2.15 2.57

M35 Fluorobenzene 462-06-6 1.96 2.16

M36 Bromobenzene 108-86-1 2.5 2.39

M37 Iodobenzene 591-50-4 2.93 2.11

M38 3-Fluorophenol 372-20-3 1.7 2.23

M39 4-Fluorophenol 371-41-5 1.73 2.07

M40 3-Chlorophenol 108-43-0 2.28 2.78

M41 4-Chlorophenol 106-48-9 2.61 2.60

M42a 3-Bromophenol 591-20-8 2.51 2.77

M43 4-Bromophenol 106-41-2 2.65 2.89

M44 3-Iodophenol 626-02-8 2.93 2.99

M45 4-Iodophenol 540-38-5 2.98 2.99

M46 Nitrobenzene 98-95-3 2.04 2.16

M47 4-Nitrophenol 100-02-7 2.39 2.91

M48 Benzene 71-43-2 2.23 2.47

M49 Phenol 108-95-2 1.98 2.15
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Table 1 continued
Chemical name CAS no Log K (Exp) Log K (Pred)

M50a Hydroquinone 123-31-9 2.05 1.77

M51 4-Nitroaniline 100-01-6 2.48 2.10

M52 Aniline 62-53-3 1.6 2.30

M53a Sulfanilamide 63-74-1 2.76 2.30

M54 Cyclohexanol 108-93-0 2.67 2.68

M55 1-Hexanol 111-27-3 2.33 2.16

M56a 2-Hexanol 626-93-7 1.98 1.76

M57 2-Methyl-2-pentanol 590-36-3 1.99 1.89

M58a 3-Methyl-3-pentanol 77-74-7 2.15 2.53

M59 4-Methyl-2-pentanol 108-11-2 2.04 1.95

M60a 3,3-Dimethyl-2-butanol 464-07-3 2.75 2.90

M61 1,6-Hexanediol 629-11-8 1.69 1.80

M62a Benzonitrile 100-47-0 2.23 1.70

M63 Benzothiazole 95-16-9 2.38 2.14

M64 4-Nitrobenzoic acid 62-23-7 2.34 2.76

M65 Benzaldehyde 100-52-7 1.78 2.12

M66a Benzoic acid 65-85-0 2.12 1.76

M67 4-Hydroxybenzaldehyde 123-08-0 1.75 2.26

M68 4-Hydroxybenzoic acid 99-96-7 2.2 1.74

M69a Benzyl chloride 100-44-7 2.45 2.49

M70 Toluene 108-88-3 2.09 2.36

M71 Benzyl alcohol 100-51-6 1.71 1.52

M72 Anisole 100-66-3 2.32 2.04

M73 m-Cresol 108-39-4 1.98 2.50

M74 p-Cresol 106-44-5 2.4 2.75

M75a 4-Methoxyphenol 150-76-5 2.21 2.55

M76 3-Methoxyphenol 150-19-6 2.11 1.84

M77 4-Hydroxybenzyl alcohol 623-05-2 2.16 1.67

M78 Hydrochlorothiazide 58-93-5 1.76 2.32

M79 N-Methylaniline 100-61-8 2.12 2.19

M80 1-Butylimidazole 4316-42-1 2.19 2.54

M81 1-Heptanol 111-70-6 2.85 3.05

M82 Phenylacetylene 536-74-3 2.36 2.55

M83 Thianaphthene 95-15-8 3.23 2.69

M84a 4-Fluorophenyl acetate 405-51-6 2.11 2.59

M85 3-Fluorophenyl acetate 701-83-7 1.91 2.27

M86 4-Chlorophenyl acetate 1878-66-6 2.5 3.06

M87 3-Chlorophenyl acetate 13031-39-5 2.44 2.34

M88 4-Bromophenyl acetate 1878-68-8 2.68 3.34

M89 3-Bromophenyl acetate 35065-86-2 2.67 2.31

M90a 4-Iodophenyl acetate 33527-94-5 3 3.08

M91 3-Iodophenyl acetate 61-71-2 3.07 2.58

M92 4-Nitrophenyl acetate 830-03-5 2.13 2.12

M93 Acetophenone 98-86-2 2.27 2.34

M94a Phenyl acetate 122-79-2 2.1 2.39

M95a Methyl benzoate 93-58-3 2.5 1.82

M96 3-Hydroxyacetophenone 121-71-1 2.06 2.25

M97a 4-Hydroxyacetophenone 99-93-4 2.18 2.63

M98 Acetoanilide 103-84-4 2.2 1.86
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Table 1 continued
Chemical name CAS no Log K (Exp) Log K (Pred)

M99 p-Xylene 106-42-3 2.38 2.72

M100 Ethylbenzene 100-41-4 2.59 2.44

M101a Phenetole 103-73-1 2.49 2.09

M102 2-Phenylethanol 60-12-8 2.15 2.96

M103 3-Ethylphenol 620-17-7 2.6 2.58

M104 4-Ethylphenol 123-07-9 2.69 3.74

M105 4-Ethoxyphenol 622-62-8 2.33 3.19

M106 3-Ethoxyphenol 621-34-1 2.35 2.31

M107a 3,5-Dimethoxyphenol 500-99-2 2.34 2.28

M108 N-Ethylaniline 103-69-5 2.34 2.08

M109 N,N-Dimethylaniline 121-69-7 2.36 2.61

M110 Barbital 57-44-3 1.78 1.88

M111a Cyclooctanol 696-71-9 3.3 3.44

M112 1-Octanol 111-87-5 3.17 3.32

M113a 2-Octanol 4128-31-8 3.13 2.71

M114a Quinoline 91-22-5 2.12 2.17

M115 3-Cyanophenyl acetate 55682-11-6 1.49 2.47

M116a 4-Hydroxycinnamic acid 4501-31-9 2.83 2.52

M117 Ethyl benzoate 93-89-0 2.73 2.06

M118a 40-Hydroxypropiophenone 70-70-2 2.63 3.27

M119 30-Hydroxypropiophenone 13103-80-5 2.61 2.73

M120 p-Tolyl acetate 140-39-6 2.49 2.63

M121a 3-Methylphenyl acetate 122-46-3 2.21 2.60

M122 4-Methoxyphenyl acetate 54771-60-7 2.45 2.63

M123 4-Propylphenol 645-56-7 3.55 3.80

M124 3-Propylphenol 621-27-2 3.28 2.83

M125 4-Isopropylphenol 99-89-8 3.58 3.40

M126 3-Isopropylphenol 618-45-1 3.44 2.43

M127 4-Isopropoxyphenol 7495-77-4 2.86 2.86

M128 2-Norbornaneacetate 1007-01-8 3.59 2.74

M129 1-Benzylimidazole 4238-71-5 2.61 2.65

M130 m-Methylcinnamic acid 3029-79-6 2.93 2.77

M131 4-Ethylphenyl acetate 3245-23-6 2.83 3.10

M132 3-Ethylphenyl acetate 3056-60-8 2.68 2.54

M133 4-Ethoxyphenyl acetate 22545-15-9 2.54 2.63

M134a 3-Ethoxyphenyl acetate 52600-91-6 2.49 2.53

M135 Allobarbital 52-43-7 1.98 2.21

M136a 4-n-Butylphenol 1638-22-8 3.97 4.61

M137 3-n-Butylphenol 4074-43-5 3.76 3.50

M138 3-Isobutylphenol 30749-25-8 4.18 3.24

M139a 4-sec-Butylphenol 99-71-8 2.7 3.88

M140 3-sec-Butylphenol 3522-86-9 4.06 3.22

M141 4-tert-Butylphenol 98-54-4 4.56 3.64

M142 3-tert-Butylphenol 585-34-2 4.41 3.33

M143 Menadion 57-28-5 2.27 2.30

M144a Sulfapyridine 144-83-2 2.48 2.38

M145 Sulfamonomethoxine 1220-83-3 2.48 2.53

M146 Sulfisoxazole 127-69-5 2.32 2.50

M147 4-n-Propylphenyl acetate 61824-46-2 3.15 3.23
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Table 1 continued
Chemical name CAS no Log K (Exp) Log K (Pred)

M148a 3-n-Propylphenyl acetate 717918-70-2 3.28 3.09

M149a 4-Isopropylphenyl acetate 2664-32-6 2.88 2.80

M150 3-Isopropylphenyl acetate 4861-85-2 3.36 2.42

M151 4-n-Amylphenol 14938-35-3 4.19 4.09

M152 4-tert-Amylphenol 80-46-6 4.7 4.14

M153a Carbutamide 339-43-5 2.29 2.14

M154 Pentobarbital 76-74-4 3.01 2.96

M155 Amobarbital 57-43-2 3.07 2.58

M156 Thiopental 76-75-5 3.28 2.80

M157 Dibenzofuran 132-64-9 2.97 2.97

M158 Dibenzothiophene 132-65-0 3.48 3.26

M159 Phenazine 92-82-0 2.41 2.57

M160 Thianthrene 92-85-3 3.57 3.10

M161 Carbazole 86-74-8 2.44 2.94

M162 Phenoxazine 135-67-1 2.69 2.86

M163 Phenothiazine 92-84-2 2.73 3.03

M164 Furosemide 54-31-9 1.78 2.24

M165 Phenobarbital 50-06-6 3.22 2.71

M166a Sulfisomidine 515-64-0 2.1 1.68

M167 Sulfamethomidine 3772-76-7 2.33 2.60

M168 Sulfadimethoxine 122-11-2 2.26 2.50

M169 4-n-Butylphenyl acetate 14377-19-6 3.62 3.15

M170a 3-n-Butylphenyl acetate 122-43-0 3.66 3.40

M171 3-Isobutylphenyl acetate 66622-47-7 3.83 3.43

M172a 4-tert-Butylphenyl acetate 3056-64-2 2.71 3.06

M173 Cyclobarbital 52-31-3 2.71 3.06

M174 Hexobarbital 56-29-1 3.08 3.25

M175 1-Adamantaneacetate 4942-47-6 4.32 2.91

M176 Acridine 260-94-6 2.33 2.32

M177 Phenanthridine 229-87-8 2.57 2.18

M178a Xanthene 92-83-1 3.1 2.30

M179 N-Phenylanthranilic acid 91-40-7 2.89 3.04

M180 Mephobarbital 115-38-8 3.16 2.20

M181 4-n-Amylphenyl acetate 17713-58-5 3.8 3.29

M182a Flufenamic acid 530-78-9 2.35 2.80

M183 Meclofenamic acid 644-62-2 2.67 3.23

M184 Nitrazepam 146-22-5 1.97 2.94

M185 Flurbiprofen 5104-49-4 3.69 3.08

M186a Sulfaphenazole 526-08-9 2.4 2.76

M187 Bendroflumethiazide 73-48-3 1.9 1.96

M188 Mefenamic acid 61-68-7 2.49 3.24

M189 Acetohexamide 968-81-0 2.94 3.52

M190 Fludiazepam 3900-31-0 2.33 2.32

M191 Nimetazepam 2011-67-8 1.73 2.80

M192 Fenbufen 36330-85-5 2.63 3.07

M193 Ketoprofen 22071-15-4 2.85 3.20

M194a Medazepam 2898-12-6 2.53 2.43

M195a Progabide 62666-20-0 3.83 2.54

M196 Griseofulvin 126-07-8 1.47 2.92
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molecules, the region showing favorable energies of

interaction represent positions where host molecules would

interact favorably with guest molecules [25].

Model construction

Chemometric analysis was carried out using the statistical

tools included in Pentacle software. The GRIND descrip-

tors were related to stability constants by means of partial

least square (PLS) analysis [26]. The GRIND descriptors

were the X variables and stability constants, after log-

transformation, were the y variable. The optimum number

of PLS component (latent variables, LV) was chosen by

monitoring changes in the model’s predicting index (qloo
2 ,

leave one out) evaluated by applying the cross-validation

procedure available in Pentacle. The PLS coefficients

represent the contribution of each single descriptor to the

model only with respect to y variable. Validation of the

model was performed internally and externally using cross-

validation method and test set respectively. In the final

model, a total of 501 descriptors were derived after vari-

able selection via fractional factorial design (FFD). The

Table 1 continued

a Test set

Chemical name CAS no Log K (Exp) Log K (Pred)

M197a Tolnaftate 2398-96-1 3.35 3.03

M198 Prostacyclin 63859-31-4 2.94 3.35

M199 Triamcinolone 124-94-7 3.37 3.78

M200a Cortisone 53-06-5 3.56 4.06

M201 Prednisolone 50-24-8 3.56 3.62

M202 Hydrocortisone 50-23-7 3.6 4.29

M203 Corticosterone 53-06-5 3.85 4.03

M204 Dexamethasone 50-02-2 3.65 3.83

M205a Betamethasone 378-44-9 3.73 3.81

M206 Paramethasone 53-33-8 3.4 3.55

M207 Cortisone-21-acetate 50-04-4 3.62 3.38

M208a Prednisolone-21-acetate 52-21-1 3.76 3.42

M209 Hydrocortisone-21-acetate 50-03-3 3.51 3.67

M210 Fluocinolone acetonide 67-73-2 3.48 3.77

M211a Triamcinolone acetonide 76-25-5 3.51 3.78

M212 Spironolactone 52-01-7 4.44 3.62

M213 Dehydrocholic acid 81-23-2 3.38 4.07

M214 Chenodeoxycholic acid 474-25-9 4.36 3.78

M215 Ursodeoxycholic acid 128-13-2 4.51 3.39

M216a Cholic acid 81-25-4 3.5 3.78

M217 Hydrocortisone-17-butyrate 94-25-7 3.23 2.97

M218 Cinnarizine 7002-58-6 3.64 2.80

M219 Cycloheptanol 502-41-0 3.23 2.78

M220 2-Methoxyethanol 109-86-4 0.22 0.14

M221 3-Hydroxycinnamic acid 588-30-7 2.56 1.60

M222a Ethyl 4-hydroxybenzoate 120-47-8 3.01 2.32

M223 Ethyl 4-aminobenzoate 94-09-7 2.69 2.43

M224a 4-Methylcinnamic acid 1866-39-3 2.65 2.91

M225 Sulfadiazine 68-35-9 2.52 2.07

M226 L-a-O-benzylglycerol 56552-80-8 2.11 2.11

M227a Sulfamerazine 127-79-7 1.97 2.58

M228 Butyl 4-hydroxybenzoate 94-26-8 3.39 2.90

M229a Butyl 4-aminobenzoate 94-25-7 3.19 2.98

M230 Benzidine 92-87-5 3.35 3.49

M231a Triflumizole 99387-89-0 2.66 3.12

M232 Diazepam 439-14-5 2.33 2.16

M233 Prostaglandine E2 363-24-6 3.09 3.30
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PLS analysis resulted in a model with six latent variables

and an Rtrain
2 = 0.87 with a standard deviation of the error

of calculation (SPEC) of 0.34. We tested the predictivity of

the obtained model with a test set of 60 diverse guest

molecules, for structure see Table 1. The cross validation

of the model by LOO technique yielded q2 values of 0.75

and by external validation of the model the RPred
2 value of

0.74 was obtained. The experimental and calculated log K

values are listed in Table 1.

Model validation and applicability domain

In order to check the reliability of the PLS model generated

in our studies to chance correlation, we have used the

progressive scrambling method [21]. In this approach,

small random perturbations are introduced into training set

and the statistical results, the perturbation prediction (q2),

the calculated cross-validated standard error of prediction

(cSDEP) as the function of the correlation coefficient

between the true values (y) of the dependent variables and

the perturbed values (y0) of the dependent variables, and

the slope of q2 (cross validated correlation coefficient) with

respect correlation of the original dependent variables

against the perturbed dependent variables (dq
20/dryy

02), are

calculated. The obtained values of the sensitivity to the

perturbation dq
20/dryy

02, the prediction and cSDEP produced

by a progressive scrambling analyses were 0.8779, 0.513

and 0.654 for the model respectively. These values confirm

the robustness and independent of chance correlation of the

model.

The analysis of the chemical applicability domain (AD)

of the obtained model and the reliability of the predictions

are also verified by the leverage approach, which is based

in computing the leverage, h*, for each compound for

which the QSPR model is used to predict the property

under study [27, 28]. The warning leverage is generally

fixed at 3 k/n, where k is the number of the model

parameters plus 1 and n is the number of training set

compounds. The analysis of the applicability domain of the

model, Fig. 1, reveals the presence of just one chemical as

outlier in the training set, namely 4-ethylphenyl acetate

(M131). The statistics’ of the model were not significantly

affected when omitting this compound. It is also important

to note that the validation compounds which were not used

for model development are predicted with similar accuracy

of the training compounds.

Interpretation of descriptors

Figure 2 shows the PLS coefficient plot indicated the most

important pairs of nodes that contribute negatively or

positively to the stability constants. A first inspection of the

PLS coefficients plot enabled us to select some X variables

with the highest impact on the y variable. The largest peaks

were related to the TIP probe (correlograms TIP-TIP,

DRY-TIP and N1-TIP), which represent shape and size of

the molecules. The next effective peaks were related to the

DRY probe, suggesting that in a preliminary analysis the

size and shape of the molecules as well as presence and

orientation of hydrophobic groups were crucial for the

stability constants of compounds here investigated with

b-CD. To gain a deeper insight into the models, the vari-

ables with highest impact on y variable were inspected in

more detail. Variable 188, TIP-TIP: distance 6.8–7.2 Å,

explained the largest impact on stability constant with an

inverse relationship. Small size molecules like: M3, M4,

M5, and M7 (methanol, acetaldehyde, acetonitrile and 1,2

ethandiol) had the largest value of variable 188, but for a

medium size molecule like M88 (4-bromophenyl acetate)

has a low value of that variable. The distance node of

variable 188 (6.8–7.2) is very near to inner diameter of

b-CD (6.2–7.8 Å). In general, the efficiency and selectivity

in host: guest binding strongly depends on shape and pre-

organization within the host molecule, and the size-match

of the host cavity to the guest [29].

The size-fit effect appears to play a subsidiary role in the

inclusion complexation of the host: guest molecules. The fit

of the entire or at least a part of the guest molecule in the

cyclodextrin host cavity determines the stability of the

inclusion complex and the selectivity of the complexation

process [30]. Small compounds, smaller than cavity size of

CD, easily resort in the cavity of the b-CD, they can’t have

good interaction with inner side of the b-CD cavity and

therefore they have very low stability constants. Interest-

ingly, the most variables of TIP-TIP correlogram that have

negatively correlated bars are located on the left side of the

Fig. 1 Plot of standardized residuals versus leverages. Dotted lines
represent ±3 standardized residual, dash line represents warning

leverage (h* & 0.14)
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correlogram and variables with positively impact on the

y are positioned on larger node–node distance, i.e. on right

side of correlogram.

Figure 3 shows graphical display of variable 188 for

the most inactive (M5) and the most active (M152)

compound. Variable 370 indicated a significant distance of

11.2–11.6A� between TIP and DRY nodes which has

positive correlation with stability constants. It is well

known that DRY probe favorably interact with different

types of p systems (aromatic or vinyl type), but have not

Fig. 2 PLS coefficient plot

Fig. 3 Graphical display of GRIND variable 188 of the TIP-TIP auto-correlogram for (a): the most inactive (M5) and (b): the most active

(M152) compound
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high affinity to aliphatic moieties. Therefore this variable is

not expressed for the most inactive compound (Fig. 4).

Variable 370 indicated a significant distance of 14–14.4 Å

between TIP and N1 nodes which has positive correlation

with stability constants vector. This variable is not

expressed for the most inactive and most active compound.

The graphical display of this variable for selected com-

pound was shown in Fig. 5.

As N1 probe represents hydrogen bonding (HB)

acceptor interaction, it is important in compounds with

hydrogen bond donor group. The graphical display of this

variable for selected compound was shown in Fig. 6.

Variable 126, N1–N1 at distance of 4.8–5.2 Å, indicated an

inverse relationship between this variable and stability

constants. The negative impact on y observed in the auto-

correlogram N1–N1 for this variable can be explained by

an increasing polarity of guest molecules respect to non-

polar cavity of CD. The most variables of N1–N1

Fig. 4 Graphical display of GRIND variable 370 of the DRY-TIP cross-correlogram for (a): the most inactive (M5) and (b): the most active

(M152) compound

Fig. 5 Graphical display of GRIND variable 548 of the N1-TIP

cross-correlogram of a selected (M233) compound

Fig. 6 Graphical display of GRIND variable 126 of the N1-N1 cross-

correlogram of a selected (M135) compound
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correlogram that have negative correlation with y variable

are located on the left side of the correlogram and variables

with positively impact on the y variable are positioned on

larger node–node distance. This indicated that spatial

arrangement of HB regions of molecules is important in

complexation of guest molecule to b-CD.

Conclusion

GRIND-based 3D QSAR models can give different kinds

of information: simple and fast, reliable prediction of

activity of compounds belonging to the data set and

chemical interpretation of the results obtained. The main

goal of this study was to investigate the reliability of Grind

methodology in predicting stability constant of a huge

and diverse class of guest molecules with b-CD.

GRIND variables, TIP-TIP (6.8–7.2 Å) and TIP-DRY

(11.2–11.6 Å), have high impact on stability constant.

Strong relationship represented in TIP auto and cross cor-

relogram indicated the importance of size-match of the host

cavity to the guest, for inclusion complexation between

guests molecules here investigated with b-CD. As earlier

discussed, CDs complex formation usually results from

different combinations of non-covalent interaction. There-

fore all probes represent an impact on stability constant.

Based on PLS coefficient, DRY probe, which represents

hydrophobic interactions, had stronger impact on stability

constant. It’s concluded that steric and hydrophobic inter-

actions are the mainly driving forces for b-CD complexa-

tion. The obtained 3D-QSAR which uses advanced

technique of GRIND 3D-QSAR with better theoretical

model is superior to previously reported models [13, 18]

due to its combination of quality and speed.
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